Биология. География. Информатика. Литература. Математика. История

Электрический ток в полупроводниках. Полупроводниковый диод

По значению удельного электрического сопротивления полупроводники занимают промежуточное место между проводниками и диэлектриками. К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и др.), огромное количество сплавов и химических соединений.

Качественное отличие полупроводников от металлов проявляется прежде всего в зависимости удельного сопротивления от температуры. С понижением температуры сопротивление металлов падает. У полупроводников, напротив, с понижением температуры сопротивление возрастает и вблизи абсолютного нуля они практически становятся изоляторами.

Зависимость удельного сопротивления ρ чистого полупроводника от абсолютной температуры T .

Полупроводниками называются вещевтва, удельное сопротивление которых убывает с повышением температуры.

Такой ход зависимости ρ(T ) показывает, что у полупроводников концентрация носителей свободного заряда не остается постоянной, а увеличивается с ростом температуры. Механизм электрического тока в полупроводниках нельзя объяснить в рамках модели газа свободных электронов. Объяснение явлений, наблюдаемых в проводниках, возможно на основе законов квантовой механики. Рассмотрим качественно механизм электрического тока в полупроводниках на примере германия (Ge).

Атомы германия имеют четыре слабо связанных электрона на внешней оболочке. Их называют валентными электронами . В кристаллической решетке каждый атом окружен четырьмя ближайшими соседями. Связь между атомами в кристалле германия является ковалентной , то есть осуществляется парами валентных электронов. Каждый валентный электрон принадлежит двум атомам.

Валентные электроны в кристалле германия гораздо сильнее связаны с атомами, чем в металлах; поэтому концентрация электронов проводимости при комнатной температуре в полупроводниках на много порядков меньше, чем у металлов. Вблизи абсолютного нуля температуры в кристалле германия все электроны заняты в образовании связей. Такой кристалл электрического тока не проводит. При повышении температуры некоторая часть валентных электронов может получить энергию, достаточную для разрыва ковалентных связей. Тогда в кристалле возникнут свободные электроны (электроны проводимости). Одновременно в местах разрыва связей образуются вакансии, которые не заняты электронами.

Вакансии, которые не заняты электронами получили название дырок .

Вакантное место может быть занято валентным электроном из соседней пары, тогда дырка переместиться на новое место в кристалле. При заданной температуре полупроводника в единицу времени образуется определенное количество электронно-дырочных пар .

В то же время идет обратный процесс – при встрече свободного электрона с дыркой, восстанавливается электронная связь между атомами германия. Этот процесс называется рекомбинацией .

Рекомбинация – восстановление электронной связи между атомами.

Электронно-дырочные пары могут рождаться также при освещении полупроводника за счет энергии электромагнитного излучения.

В отсутствие электрического поля электроны проводимости и дырки участвуют в хаотическом тепловом движении.

Если полупроводник помещается в электрическое поле, то в упорядоченное движение вовлекаются не только свободные электроны, но и дырки, которые ведут себя как положительно заряженные частицы. Поэтому ток I в полупроводнике складывается из электронного I n и дырочного I p токов: I = I n + I p

Электрическим током в полупроводниках называется направленное движение электронов к положительному полюсу, а дырок к отрицательному.

Концентрация электронов проводимости в полупроводнике равна концентрации дырок: n n = n p . Электронно-дырочный механизм проводимости проявляется только у чистых (то есть без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.

Собственной электрической проводимостью полупроводников называется электронно-дырочный механизм проводимости, который проявляется только у чистых (то есть без примесей) полупроводников.

При наличии примесей электропроводимость полупроводников сильно изменяется.

Примесной проводимостью называется проводимость полупроводников при наличии примесей.

Необходимым условием резкого уменьшения удельного сопротивления полупроводника при введении примесей является отличие валентности атомов примеси от валентности основных атомов кристалла.

Различают два типа примесной проводимости – электронную и дырочную проводимости.

  1. Электронная проводимость возникает, когда в кристалл полупроводника вводится примесь с большей валентностью.

Например, вкристалл германия с четырехвалентными атомами введены пятивалентные атомы мышьяка, As.

На рисунке показан пятивалентный атом мышьяка, оказавшийся в узле кристаллической решетки германия. Четыре валентных электрона атома мышьяка включены в образование ковалентных связей с четырьмя соседними атомами германия. Пятый валентный электрон оказался лишним; он легко отрывается от атома мышьяка и становится свободным. Атом, потерявший электрон, превращается в положительный ион, расположенный в узле кристаллической решетки.

Донорской примесью – называется примесь из атомов с валентностью, превышающей валентность основных атомов полупроводникового кристалла.

В результате ее введения в кристалле появляется значительное число свободных электронов. Это приводит к резкому уменьшению удельного сопротивления полупроводника – в тысячи и даже миллионы раз. Удельное сопротивление проводника с большим содержанием примесей может приближаться к удельному сопротивлению металлического проводника.

В кристалле германия с примесью мышьяка есть электроны и дырки, ответственные за собственную проводимость кристалла. Но основным типом носителей свободного заряда являются электроны, оторвавшиеся от атомов мышьяка. В таком кристалле n n >> n p .

Проводимость, при которой основными носителями свободного заряда являются электроны называется электронной.

Полупроводник, обладающий электронной проводимостью, называется полупроводником n-типа .

  1. Дырочная проводимость возникает, когда в кристалл полупроводника введена примесь с меньшей валентностью.

Например, в кристалл германия введены трехвалентные атомы In.

На рисунке показан атом индия, который создал с помощью своих валентных электронов ковалентные связи лишь с тремя соседними атомами германия. На образование связи с четвертым атомом германия у атома индия нет электрона. Этот недостающий электрон может быть захвачен атомом индия из ковалентной связи соседних атомов германия. В этом случае атом индия превращается в отрицательный ион, расположенный в узле кристаллической решетки, а в ковалентной связи соседних атомов образуется вакансия.


Акцепторной примесью – называется п римесь из атомов с валентностью меньшей, чем валентность основных атомов полупроводникового кристалла, способных захватывать электроны.

В результате введения акцепторной примеси в кристалле разрывается множество ковалентных связей и образуются вакантные места (дырки). На эти места могут перескакивать электроны из соседних ковалентных связей, что приводит к хаотическому блужданию дырок по кристаллу.

Наличие акцепторной примеси резко снижает удельное сопротивление полупроводника за счет появления большого числа свободных дырок. Концентрация дырок в полупроводнике с акцепторной примесью значительно превышает концентрацию электронов, которые возникли из-за механизма собственной электропроводности полупроводника: n p >> n n .

Проводимость, при которой основными носителями свободного заряда являются дырки, называется дырочной проводимостью .

Полупроводник с дырочной проводимостью называется полупроводником p-типа .

Следует подчеркнуть, что дырочная проводимость в действительности обусловлена перемещением по вакансиям от одного атома германия к другому электронов, которые осуществляют ковалентную связь.

Зависимость электропроводимости полупроводников от температуры и освещенности

  1. У полупроводников с ростом температуры подвижность электронов и дырок падает, но это не играет заметной роли, так как при нагревании полупроводника кинетическая энергия валентных электронов возрастает и наступает разрыв отдельных связей, что приводит к увеличению числа свободных электронов, т. е. росту электропроводимости .
  1. При освещении полупроводника в нем появляются дополнительные носите­ли, что приводит к повышению его электропроводности. Это возникает в резуль­тате того, что свет вырывает электроны из атома и при этом одновременно возрастает число электронов и дырок.

Полупроводники – это материалы, которые при обычных условиях являются диэлектриками, но с увеличение температуры становятся проводниками. То есть в полупроводниках при увеличении температуры, сопротивление уменьшается.

Строение полупроводника на примере кристалла кремния

Рассмотрим строение полупроводников и основные типы проводимости в них. В качестве примера рассмотрим кристалла кремния.

Кремний является четырехвалентным элементом. Следовательно, в его внешней оболочке имеются четыре электрона, которые слабо связаны с ядром атома. С каждым по соседству находится еще четыре атома.

Атомы между собой взаимодействуют и образуют ковалентные связи. От каждого атома в такой связи участвует один электрон. Схема устройства кремния изображена на следующем рисунке.

картинка

Ковалентные связи являются достаточно прочными и при низких температурах не разрываются. Поэтому в кремнии нет свободных носителей заряда, и он при низких температурах является диэлектриком. В полупроводниках существует два вида проводимости: электронная и дырочная.

Электронная проводимость

При нагревании кремния ему будет сообщаться дополнительная энергия. Кинетическая энергия частиц увеличивается и некоторые ковалентные связи разрываются. Тем самым образуются свободные электроны.

В электрическом поле эти электроны перемещаются между узлами кристаллической решетки. При этом в кремнии будет создаваться электрический ток.

Так как основными носителями заряда являются свободные электроны, такой тип проводимости называют – электронной проводимостью. Количество свободных электронов зависит от температуры. Чем сильнее мы будем нагревать кремний, тем больше ковалентных связей будет разрываться, а следовательно, будет появляться больше свободных электронов. Это приводит к уменьшению сопротивления. И кремний становится проводником.

Дырочная проводимость

Когда происходит разрыв ковалентной связи, на месте вырвавшегося электрона, образуется вакантное место, которое может занять другой электрон. Это место называется дыркой. В дырке имеется избыточный положительный заряд.

Положение дырки в кристалле постоянно меняется, любой электрон может занять это положение, а дырка при этом переместится туда, откуда перескочил электрон. Если электрического поля нет, то движение дырок беспорядочное, и поэтому тока не возникает.

При его наличии, возникает упорядоченность перемещения дырок, и помимо тока, который создается свободными электронами, появляется еще ток, который создается дырками. Дырки будут двигаться в противоположном движению электронов направлении.

Таким образом, в полупроводниках проводимость является электронно-дырочной. Ток создается как с помощью электронов, так и с помощью дырок. Такой тип проводимости еще называется собственной проводимостью, так как участвуют элементы только одного атома.

Здравствуйте уважаемые читатели сайта . На сайте есть раздел посвященный начинающим радиолюбителям, но пока что для начинающих, делающих первые шаги в мир электроники, я толком ничего и не написал. Восполняю этот пробел, и с этой статьи мы начинаем знакомиться с устройством и работой радиокомпонентов (радиодеталей).

Начнем с полупроводниковых приборов. Но чтобы понять, как работает диод, тиристор или транзистор, надо представлять, что такое полупроводник . Поэтому мы, сначала изучим структуру и свойства полупроводников на молекулярном уровне, а затем уже будем разбираться с работой и устройством полупроводниковых радиокомпонентов.

Общие понятия.

Почему именно полупроводниковый диод, транзистор или тиристор? Потому, что основу этих радиокомпонентов составляют полупроводники – вещества, способные, как проводить электрический ток, так и препятствовать его прохождению.

Это большая группа веществ, применяемых в радиотехнике (германий, кремний, селен, окись меди), но для изготовления полупроводниковых приборов используют в основном только Кремний (Si) и Германий (Ge).

По своим электрическим свойствам полупроводники занимают среднее место между проводниками и непроводниками электрического тока.

Свойства полупроводников.

Электропроводность проводников сильно зависит от окружающей температуры.
При очень низкой температуре, близкой к абсолютному нулю (-273°С), полупроводники не проводят электрический ток, а с повышением температуры, их сопротивляемость току уменьшается .

Если на полупроводник навести свет , то его электропроводность начинает увеличиваться. Используя это свойство полупроводников, были созданы фотоэлектрические приборы. Также полупроводники способны преобразовывать энергию света в электрический ток, например, солнечные батареи. А при введении в полупроводники примесей определенных веществ, их электропроводность резко увеличивается.

Строение атомов полупроводников.

Германий и кремний являются основными материалами многих полупроводниковых приборов и имеют во внешних слоях своих оболочек по четыре валентных электрона .

Атом германия состоит из 32 электронов, а атом кремния из 14. Но только 28 электронов атома германия и 10 электронов атома кремния, находящиеся во внутренних слоях своих оболочек, прочно удерживаются ядрами и никогда не отрываются от них. Лишь только четыре валентных электрона атомов этих проводников могут стать свободными, да и то не всегда. А если атом полупроводника потеряет хотя бы один электрон, то он становится положительным ионом .

В полупроводнике атомы расположены в строгом порядке: каждый атом окружен четырьмя такими же атомами. Причем они расположены так близко друг к другу, что их валентные электроны образуют единые орбиты, проходящие вокруг соседних атомов, тем самым связывая атомы в единое целое вещество.

Представим взаимосвязь атомов в кристалле полупроводника в виде плоской схемы.
На схеме красные шарики с плюсом, условно, обозначают ядра атомов (положительные ионы), а синие шарики – это валентные электроны .

Здесь видно, что вокруг каждого атома расположены четыре точно таких же атома, а каждый из этих четырех имеет связь еще с четырьмя другими атомами и т.д. Любой из атомов связан с каждым соседним двумя валентными электронами, причем один электрон свой, а другой заимствован у соседнего атома. Такая связь называется двухэлектронной или ковалентной .

В свою очередь, внешний слой электронной оболочки каждого атома содержит восемь электронов: четыре своих, и по одному , заимствованных от четырех соседних атомов. Здесь уже не различишь, какой из валентных электронов в атоме «свой», а какой «чужой», так как они сделались общими. При такой связи атомов во всей массе кристалла германия или кремния можно считать, что кристалл полупроводника представляет собой одну большую молекулу . На рисунке розовым и желтым кругами показана связь между внешними слоями оболочек двух соседних атомов.

Электропроводность полупроводника.

Рассмотрим упрощенный рисунок кристалла полупроводника, где атомы обозначаются красным шариком с плюсом, а межатомные связи показаны двумя линиями, символизирующими валентные электроны.

При температуре, близкой к абсолютному нулю полупроводник не проводит ток, так как в нем нет свободных электронов . Но с повышением температуры связь валентных электронов с ядрами атомов ослабевает и некоторые из электронов, вследствие теплового движения, могут покидать свои атомы. Вырвавшийся из межатомной связи электрон становится «свободным », а там где он находился до этого, образуется пустое место, которое условно называют дыркой .

Чем выше температура полупроводника, тем больше в нем становится свободных электронов и дырок. В итоге получается, что образование «дырки» связано с уходом из оболочки атома валентного электрона, а сама дырка становится положительным электрическим зарядом равным отрицательному заряду электрона.

А теперь давайте рассмотрим рисунок, где схематично показано явление возникновения тока в полупроводнике .

Если приложить некоторое напряжение к полупроводнику, контакты «+» и «-», то в нем возникнет ток.
Вследствие тепловых явлений , в кристалле полупроводника из межатомных связей начнет освобождаться некоторое количество электронов (синие шарики со стрелками). Электроны, притягиваясь положительным полюсом источника напряжения, будут перемещаться в его сторону, оставляя после себя дырки , которые будут заполняться другими освободившимися электронами . То есть, под действием внешнего электрического поля носители заряда приобретают некоторую скорость направленного движения и тем самым создают электрический ток .

Например: освободившийся электрон, находящийся ближе всего к положительному полюсу источника напряжения притягивается этим полюсом. Разрывая межатомную связь и уходя из нее, электрон оставляет после себя дырку . Другой освободившийся электрон, который находится на некотором удалении от положительного полюса, также притягивается полюсом и движется в его сторону, но встретив на своем пути дырку, притягивается в нее ядром атома, восстанавливая межатомную связь.

Образовавшуюся новую дырку после второго электрона, заполняет третий освободившийся электрон, находящийся рядом с этой дыркой (рисунок №1). В свою очередь дырки , находящиеся ближе всего к отрицательному полюсу, заполняются другими освободившимися электронами (рисунок №2). Таким образом, в полупроводнике возникает электрический ток.

Пока в полупроводнике действует электрическое поле , этот процесс непрерывен : нарушаются межатомные связи — возникают свободные электроны — образуются дырки. Дырки заполняются освободившимися электронами – восстанавливаются межатомные связи, при этом нарушаются другие межатомные связи, из которых уходят электроны и заполняют следующие дырки (рисунок №2-4).

Из этого делаем вывод: электроны движутся от отрицательного полюса источника напряжения к положительному, а дырки перемещаются от положительного полюса к отрицательному .

Электронно-дырочная проводимость.

В «чистом» кристалле полупроводника число высвободившихся в данный момент электронов равно числу образующихся при этом дырок, поэтому электропроводность такого полупроводника мала , так как он оказывает электрическому току большое сопротивление, и такую электропроводность называют собственной .

Но если в полупроводник добавить в виде примеси некоторое количество атомов других элементов, то электропроводность его повысится в разы, и в зависимости от структуры атомов примесных элементов электропроводность полупроводника будет электронной или дырочной .

Электронная проводимость.

Допустим, в кристалле полупроводника, в котором атомы имеют по четыре валентных электрона, мы заменили один атом атомом, у которого пять валентных электронов. Этот атом своими четырьмя электронами свяжется с четырьмя соседними атомами полупроводника, а пятый валентный электрон останется «лишним » – то есть свободным. И чем больше больше окажется свободных электронов, а значит, такой полупроводник по своим свойствам приблизится к металлу, и чтобы через него проходил электрический ток, в нем не обязательно должны разрушаться межатомные связи .

Полупроводники, обладающие такими свойствами, называют полупроводниками с проводимостью типа «n », или полупроводники n -типа. Здесь латинская буква n происходит от слова «negative» (негатив) — то есть «отрицательный». Отсюда следует, что в полупроводнике n -типа основными носителями заряда являются – электроны , а не основными – дырки.

Дырочная проводимость.

Возьмем все тот же кристалл, но теперь заменим его атом атомом, в котором только три свободных электрона. Своими тремя электронами он свяжется только с тремя соседними атомами, а для связи с четвертым атомом у него не будет хватать одного электрона. В итоге образуется дырка . Естественно, она заполнится любым другим свободным электроном, находящимся поблизости, но, в любом случае, в кристалле такого полупроводника не будет хватать электронов для заполнения дырок. И чем больше будет таких атомов в кристалле, тем больше будет дырок.

Чтобы в таком полупроводнике могли высвобождаться и передвигаться свободные электроны, обязательно должны разрушаться валентные связи между атомами . Но электронов все равно не будет хватать, так как число дырок всегда будет больше числа электронов в любой момент времени.

Такие полупроводники называют полупроводниками с дырочной проводимостью или проводниками p -типа, что в переводе от латинского «positive» означает «положительный». Таким образом, явление электрического тока в кристалле полупроводника p-типа сопровождается непрерывным возникновением и исчезновением положительных зарядов – дырок. А это значит, что в полупроводнике p -типа основными носителями заряда являются дырки , а не основными — электроны.

Теперь, когда Вы имеете некоторое представление о явлениях, происходящих в полупроводниках, Вам не составит труда понять принцип действия полупроводниковых радиокомпонентов.

На этом давайте остановимся, а в рассмотрим устройство, принцип работы диода, разберем его вольт-амперную характеристику и схемы включения.
Удачи!

Источник:

1 . Борисов В.Г. — Юный радиолюбитель. 1985г.
2 . Сайт academic.ru: http://dic.academic.ru/dic.nsf/es/45172.

Полупроводниками назвали класс веществ, у которых с повышением температуры увеличивается проводимость, уменьшается электрическое сопротивление. Этим полупроводники принципиально отличаются от металлов.

Типичными полупроводниками являются кристаллы германия и кремния, в которых атомы объединены кова-лентной связью. При любых температурах в полупроводниках имеются свободные электроны. Свободные электроны под действием внешнего электрического поля могут перемещаться в кристалле, создавая электронный ток проводимости. Удаление электрона с внешней оболочки одного из атомов кристаллической решетки приводит к превращению этого атома в положительный ион. Этот ион может нейтрализоваться, захватив электрон у одного из соседних атомов. Далее, в результате переходов электронов от атомов к положительным ионам происходит процесс хаотического перемещения в кристалле места с недостающим электроном. Внешне этот процесс воспринимается как перемещение положительного электрического заряда, называемого дыркой .

При помещении кристалла в электрическое поле возникает упорядоченное движение дырок - дырочный ток проводимости.

В идеальном полупроводниковом кристалле электрический ток создается движением равного количества отрицательно заряженных электронов и положительно заряженных дырок. Проводимость в идеальных полупроводниках называется собственной проводимостью.

Свойства полупроводников сильно зависят от содержания примесей. Примеси бывают двух типов - донорные и акцепторные.

Примеси, отдающие электроны и создающие электронную проводимость, называютсядонорными (примеси, имеющие валентность больше, чем у основного полупроводника). Полупроводники, в которых концентрация электронов превышает концентрацию дырок, называют полупроводниками n-типа.

Примеси, захватывающие электроны и создающие тем самым подвижные дырки, не увеличивая при этом число электронов проводимости, называют акцепторными (примеси имеющие валентность меньше, чем у основного полупроводника).

При низких температурах основными носителями тока в полупроводниковом кристалле с акцепторной примесью являются дырки, а не основными носителями - электроны. Полупроводники, в которых концентрация дырок превышает концентрацию электронов проводимости, называют дырочными полупроводниками или полупроводниками р-типа. Рассмотрим контакт двух полупроводников с различными типами проводимости.



Через границу этих полупроводников происходит взаимная диффузия основных носителей: электроны из n-полупроводника диффундируют в р-полупроводник, а дырки из р-полупроводника в n-полупроводник. В результате участок n-полупроводника, граничащий с контактом, будет обеднен электронами, и в нем образуется избыточный положительный заряд, обусловленный наличием оголенных ионов примеси. Движение дырок из р-полупроводника в n-полупроводник приводит к возникновению избыточного отрицательного заряда в пограничном участке р-полупроводника. В результате образуется двойной электрический слой, и возникает контактное электрическое поле, которое препятствует дальнейшей диффузии основных носителей заряда. Этот слой называют запирающим .

Внешнее электрическое поле влияет на электропроводность запирающего слоя. Если полупроводники подключены к источнику так, как показано на рис. 55, то под действием внешнего электрического поля основные носители заряда - свободные электроны в п-полупроводнике и дырки в р-полупроводнике - будут двигаться навстречу друг другу к границе раздела полупроводников, при этом толщина p-n-перехода уменьшается, следовательно, уменьшается его сопротивление. В этом случае сила тока ограничивается внешним сопротивлением. Такое направление внешнего электрического поля называется прямым. Прямому включению p-n-перехода соответствует участок 1 на вольт-амперной характеристике (см. рис. 57).



Носители электрического тока в различных средах и вольт-амперные характеристики обобщены в табл. 1.

Если полупроводники подключены к источнику так, как показано на рис. 56, то электроны в п-полупроводнике и дырки в р-полупроводнике будут перемещаться под действием внешнего электрического поля от границы в противоположные стороны. Толщина запирающего слоя и, следовательно, его сопротивление увеличиваются. При таком направлении внешнего электрического поля - обратном (запирающем) через границу раздела проходят только неосновные носители заряда, концентрация которых много меньше, чем основных, и ток практически равен нулю. Обратному включению р-п-перехода соответствует участок 2 на вольт-амперной характеристике (рис. 57).

Таким образом, р-п-переход обладает несимметричной проводимостью. Это свойство используется в полупроводниковых диодах, содержащих один p-n-переход и применяемых, например, для выпрямления переменного тока или детектирования.

Полупроводники находят широкое применение в современной электронной технике.

Зависимость электрического сопротивления полупроводниковых металлов от температуры используется в специальных полупроводниковых приборах - терморезисторах . Приборы, в которых используется свойство полупроводниковых кристаллов изменять свое электрическое сопротивление при освещении светом, называются фоторезисторами .

Электрический Ток в Вакууме

Если два электрода поместить в герметичный сосуд и удалить из сосуда воздух, то электрический ток в вакууме не возникает - нет носителей электрического тока. Американский ученый Т. А. Эдисон (1847-1931) в 1879 г. обнаружил, что в вакуумной стеклянной колбе может возникнуть электрический ток, если один из находящихся в ней электродов нагреть до высокой температуры. Явление испускания свободных электронов с поверхности нагретых тел называется термоэлектронной эмиссией. Работа, которую нужно совершить для освобождения электрона с поверхности тела, называется работой выхода. Явление термоэлектронной эмиссии объясняется тем, что при повышении температуры тела увеличивается кинетическая энергия некоторой части электронов в веществе. Если кинетическая энергия электрона превысит работу выхода, то он может преодолеть действие сил притяжения со стороны положительных ионов и выйти с поверхности тела в вакууме. На явлении термоэлектронной эмиссии основана работа различных электронных ламп.

Дрейфовый ток

В полупроводниках свободные электроны и дырки на­ходятся в состоянии хаотического движения. Поэтому, если выбрать произвольное сечение внутри объема полупровод­ника и подсчитать число носителей заряда, проходящих через это сечение за единицу времени слева направо и справа налево, значения этих чисел окажутся одинаковы­ми. Это означает, что электрический ток в данном объеме полупроводника отсутствует.

При помещении полупроводника в электрическое поле напряженностью Е на хаотическое движение носителей зарядов накладывается составляющая направленного дви­жения. Направленное движение носителей зарядов в элек­трическом поле обусловливает появление тока, называе­мого дрейфовым (Рисунок 1.6, а) Из-за столкновения носителей зарядов с атомами кристал- лической решетки их движение в направ­лении действия электрического поля

прерывисто и харак­теризуется подвижностью m. Подвижность равна сред­ней скорости , приобретаемой носителями заряда в направлении действия электрического поля напряженностью Е = 1 В/м, т. е.

Подвижность носителей зарядов зависит от механизма их рассеивания в кристаллической решетке. Исследова­ния показывают, что подвижности электронов m n и дырок m p имеют различное значение (m n > m p) и определяются температурой и концентрацией примесей. Увеличение тем­пературы приводит к уменьшению подвижности, что зави­сит от числа столкновений носителей зарядов в единицу времени.

Плотность тока в полупроводнике, обусловленного дрей­фом свободных электронов под действием внешнего элек­трического поля со средней скоростью , определяется выражением .

Перемещение (дрейф) дырок в валентной зоне со сред­ней скоростью создает в полупроводнике дырочный ток, плотность которого . Следовательно, полная плот­ность тока в полупроводнике содержит электронную j n и дырочную j р составляющие и равна их сумме (n и p - концентрации соответственно электронов и дырок).

Подставляя в выражение для плотности тока соотноше­ние для средней скорости электронов и дырок (1.11), по­лучаем

(1.12)

Если сравнить выражение (1.12) с законом Ома j =sЕ, то удельная электропроводность полупроводника опреде­ляется соотношением

У полупроводника с собственной электропроводностью кон­центрация электронов равна концентрации дырок (n i = p i), и его удельная электропроводность определяется выра­жением

В полупроводнике n-типа > , и его удельная электропроводность с достаточной степенью точности мо­жет быть определена выражением

.

В полупроводнике р-типа > , и удельная элек­тропроводность такого полупроводника

В области высоких температур концентрация электро­нов и дырок значительно возрастает за счет разрыва ковалентных связей и, несмотря на уменьшение их подвижно­сти, электропроводность полупроводника увеличивается по экспоненциальному закону.

Диффузионный ток

Кроме теплового возбуждения, приводящего к возник­новению равновесной концентрации зарядов, равномерно распределенных по объему полупроводника, обогащение полупроводника электронами до концентрации n p и дыр­ками до концентрации p n может осуществляться его осве­щением, облучением потоком заряжённых частиц, введе­нием их через контакт (инжекцией) и т. д. В этом случае энергия возбудителя передается непосредственно носите­лям заряда и тепловая энергия кристаллической решетки остается практически постоянной. Следовательно, избы­точные носители заряда не находятся в тепловом равнове­сии с решеткой и поэтому называются неравновесными. В отличие от равновесных они могут неравномерно распре­деляться по объему полупроводника (рисунок 1.6, б)

После прекращения действия возбудителя за счет реком­бинации электронов и дырок концентрация избыточных но­сителей быстро убывает и достигает равновесного значения.

Скорость рекомбинации неравновесных носителей про­порциональна избыточной концентрации дырок (p n - ) или электронов (n p - ):

где t p - время жизни дырок; t n - время жизни электронов. За время жизни концентрация неравновесных носите­лей уменьшается в 2,7 раза. Время жизни избыточных носителей составляет 0,01...0,001 с.

Носители зарядов рекомбинируют в объеме полупро­водника и на его поверхности. Неравномерное распределение неравновесных носите­лей зарядов сопровождается их диффузией в сторону мень­шей концентрации. Это движение носителей зарядов обу­словливает прохождение электрического тока, называемо­го диффузионным (рисунок 1.6, б).

Рассмотрим одномерный случай. Пусть в полупровод­нике концентрации электронов n(x) и дырок p(x) являют­ся функциями координаты. Это приведет к диффузионно­му движению дырок и электронов из области с большей их концентрацией в область с меньшей концентрацией.

Диффузионное движение носителей зарядов обуслов­ливает прохождение диффузионного тока электронов и дырок, плотности которых определяют­ся из соотношений:

; (1.13) ; (1.14)

где dn(x)/dx, dp(x)/dx - градиенты концентраций электронов и дырок; D n , D p - коэффициенты диффузии электро­нов и дырок.

Градиент концентрации характери­зует степень неравномерности распределения зарядов (электронов и дырок) в полупроводнике вдоль какого-то выбранного направления (в данном случае вдоль оси x). Коэффициенты диффузии показывают количество носителей заряда, пересекающих в единицу времени еди­ничную площадку, перпендикулярную к выбранному направ­лению, при градиенте концентрации в этом направлении, рав­ном единице. Коэффициенты

диффузии связаны с подвижностями носителей зарядов соотношениями Эйнштейна:

; .

Знак "минус" в выражении (1.14) означает противопо­ложную направленность электрических токов в полупро­воднике при диффузионном движении электронов и дырок в сторону уменьшения их концентраций.

Если в полупроводнике существует и электрическое поле, и градиент концентрации носителей, проходящий ток будет иметь дрейфовую и диффузионную составляющие. В таком случае плотности токов рассчитываются по следую­щим уравнениям:

; .